Programme of study for Year 13 Alevel 24-2025

Autumn (1 st term)	Autumn (2 nd term)	Spring (1 st term)	Spring (2 nd Term)	Summer (1 st term)	Summer (2 nd term)
Topic/Key Questions/	Topic / Big Question:	Topic / Big Question:	Topic / Big Question:	Topic / Big Question:	Topic / Big Question:
Pure:	Pure:	Pure:			N/A
Re-teach: Binomial expansion;	Trigonometry and modelling; Parametric	Numerical Methods; Integration and Vector	N/A	N/A	N/A
Radians; Trigonometric functions	Equations; Differentiation				
Applied maths:	Applied maths:	Applied maths:			
Mechanics: Moments; Forces and Friction	Mechanics: Applications of forces; Projectiles	Statistics: Conditional probability.			
		<mark>Mechanics-</mark> Further Kinematics			
<mark>Skills (</mark> students should be	<mark>Skills</mark> (students should be	<mark>Skills</mark> (students should be	Skills (students should	Skills (students should	Skills (students should
<mark>able to do):</mark> Know the difference	able to do): Prove and use the	<mark>able to do):</mark> Carry out formal	be able to do):	be able to do):	be able to do):
between an arithmetic	addition formulae.	mathematical proofs.		N/A	N/A
and geometric sequence.		•	N/A	N/A	
	Understand and use the	Locate roots of $f(x) = 0$ by			
Know the difference between a sequence and	double-angle formulae.	considering changes of sign.			
series.	Solve trigonometric				
	equations using the	Use iteration to find an			
Recall and use the	double angle and addition	approximation to the root			
formulae for the nth term	formulae.	of the equation $f(x) = 0$.			

and summations of				
	Simplify expressions of the	Lice the Newton Depheen		
arithmetic and geometric		Use the Newton-Raphson		
sequences and series.	form acosx + bsinx .	method Applications to be		
Concerto convence using	Dreve tricere erectric	modelling.		
Generate sequences using	Prove trigonometric	Internets standard		
recurrence relations.	identities using a variety	Integrate standard		
	of identities.	mathematical functions		
Model real-life situations		including trigonometric		
with sequences and series.	Use trigonometric	and exponential functions		
	functions to model real-	and use the reverse of the		
Carry out binomial	life situations.	chain rule to integrate		
expansions for any		functions of the form f(ax		
rational constant and	Convert parametric	+ b).		
determine the range of	equations into Cartesian			
values for which the	form by substitution and	Use trigonometric		
expansion is valid.	by using trigonometric	identities in integration.		
	identities.			
Convert between degrees	Understand and use	Use the reverse of the		
and radians.	parametric equations of	chain rule to integrate		
	curves and sketch	more complex functions		
Find an arc length using	parametric curves.	Integrate functions by		
radians.		making a substitution.		
	Solve coordinate			
Find areas of sectors and	geometry problems	Use integration by parts		
segments using radians.	involving parametric	and using partial fractions.		
	equations.			
Solve trigonometric		Use integration to find		
equations in radians.	Use parametric equations	the area under a curve.		
	in modelling in a variety of			
Use approximate	contexts.	Use the trapezium rule to		
trigonometric values when		approximate the area		
x is small.	Differentiate	under a curve.		
	trigonometric functions.			
Understand the		Use vectors in 3D Use		
definitions of secant,	Differentiate exponentials	vectors to solve geometric		
cosecant, and cotangent	and logarithms.	problems Model 3D		
and their relationship to		motion in mechanics with		
cosine, sine and tangent.	Differentiate functions	vectors.		
	using the chain, product			
	and quotient rules.			

			1	
Simplify expressions,		Understand set notation		
prove simple identities	Differentiate functions	in probability.		
and solve	which are defined			
equations using secant,	implicitly.	Understand conditional		
cosecant, and cotangent.		probability.		
	Use the second derivative			
Calculate the turning	to describe the behaviour	Solve conditional		
effect of a force applied to	of a function.	probability problems using		
a rigid body.		two-way tables and Venn		
	Find an unknown force	diagrams.		
Calculate the resultant	when a system is in	-		
moment of a set of forces	equilibrium.	Use probability formulae		
acting on a rigid body.		to solve problems.		
	Solve statics problems	'		
Solve problems involving	involving weight, tension	Solve conditional		
uniform rods in	and pulleys.	probability using tree		
equilibrium.		diagrams.		
	Understand and solve			
Solve problems involving	problems involving	Work with vectors for		
non-uniform rods.	limiting equilibrium.	displacement, velocity and		
non amon rous.		acceleration when using		
Solve problems involving	Solve problems involving	the vector equation of		
rods on the point of	motion on rough or	motion.		
tilting.	smooth inclined planes.			
titting.	shooth melmed planes.	Use calculus with harder		
Resolve forces into	Solve problems involving	functions of time involving		
	connected particles that	variable acceleration.		
components	require the resolution of			
Lico tho triangle law to		Differentiate and integrate		
Use the triangle law to find a resultant force	forces.	Differentiate and integrate		
	Model motion under	vectors with respect to		
Coluo problema involvin -		time.		
Solve problems involving	gravity for an object			
smooth or rough inclined	projected horizontally.			
planes	Descharge levels in the			
	Resolve velocity into			
Understand friction and	components.			
the coefficient of friction				
	Understand exponential			
	models in bivariate data.			

Use a change of variable		
to estimate coefficients in		
an exponential model.		
Understand and calculate		
the product moment		
correlation coefficient.		
Carry out a hypothesis test		
for zero correlation Key		
Skills.		
– Mechanics: Work with		
vectors for displacement,		
velocity and acceleration		
when using the vector		
equation of motion.		
Use calculus with harder		
functions of time involving		
variable acceleration.		
Differentiate and integrate		
vectors with respect to		
time.		
Use iteration to find an		
approximation to the root		
of the equation $f(x) = 0$		
Use the Newton-Raphson		
method Applications to be		
modelling.		
inoucinity.		
-Statistics: Understand set		
notation in probability.		
Understand conditional		
probability.		
Solve conditional		
probability problems using		

two-way tables and V	/enn		
diagrams.			
Use probability form	llae		
to solve problems.			
Solve conditional			
probability using tree			
diagrams.			
Understand the norm	hal		
distribution and the			
characteristics of a n	ormal		
distribution curve.			
Find percentage poin			
and calculate values			
standard normal curv	/e.		
Find unknown mean	sand		
/ or standard deviation			
for a normal distribut			
Approximate a binor	nial		
distribution using a			
normal distribution.			
Select appropriate distributions and solv			
real-life problems in	/e		
context.			
concext.			
Solve problems invol	ving		
particles projected at	-		
angle.			
Derive the formulae			
time of flight, range a			
greatest height, and	tne		

Key Learning Outcomes (students should know): By the end of the sub-unit, students will be able to perform all the skills highlighted above	equation of the path of a projectile. Key Learning Outcomes (students should know): By the end of the sub-unit, students will be able to perform all the skills highlighted above	Key Learning Outcomes (Students should know): By the end of the sub-unit, students will be able to perform all the skills highlighted below.	Key Learning Outcomes (students should know):	Key Learning Outcomes (students should know):	Key Learning Outcomes (students should know):
End of term 1 assessment to cover: At the beginning of Spring 1, all year 13 pupils will be doing their Mocks. They will be tested on the following: Pure: All contents of AS in addition to Sequences and Series, Binomial expansion; Radians; Trigonometric functions Trigonometry and modelling; Parametric Equations; Differentiation. Applied: All contents of applied plus Moments; Forces and Friction, Applications of forces; Projectiles Formative assessment as per Assessment calendar		End of term 2 assessment to At the beginning of summer final Mock Examination tha from the Pure and from the specification. Formative assessment as pe	1 term, we desire to do a t will be covering all topics Applied sections of the	End of year assessment to o Exam practice –Past papers Formative assessment as pe Pupils will be sitting the Pu	er Assessment calendar

Building understanding: Rationale / breakdown for your sequence of lessons:	Building understanding: Rationale / breakdown for your sequence of lessons:	Building understanding: Rationale / breakdown for your sequence of	Building understanding: Rationale / breakdown for your sequence of	Building understanding: Rationale / breakdown for your sequence of	Building understanding: Rationale / breakdown for your sequence of
Sequences and Series will be retaught, anticipating that there will be those who would have missed the opportunity to have attended the prescribed lessons in year 12 Summer 2. This will also give rise to further strengthening the bases of the pupils who would have seen it all prior to now. Doing Radians at this point will lead to a greater appreciation of trigonometrical differentiation as it is the substratum of the basic differentials on which all others are built. Doing a more advanced form of trigonometry at this point will give pupils a continuous platform to build on the concepts that they would have seen in year 12. This will be more	In terms of the trigonometric graphs and their solutions, the modelling of situation allows for the pupils to put into practice the content that they would have seen in the previous term as well as undergirding the AS concepts they saw. In kinematics this can then be extended to the waves themselves and the sporting context to surfing and other examples. The extensive use of graphs throughout this topic is vital to gaining an understanding of what is going on. However, there are other ways to set this process into context.	lessons: Much of mechanics at a higher level and engineering at university relies on the ability to solve differential equations in some form or another. This is touched upon at a basic level here, however once again it is important for learners to know what is that they can achieve in the long term were they to pursue this further. Numerical Methods links with polynomials and finding roots using algebraic methods; curve sketching; number sets and irrational numbers. It is also related to limits, derivatives, recurrence relations, integrals and	N/A	N/A	N/A
, meaningful to them as they will be able to make the needed connections	The work on connected rates of change should all be set into practical	sequences. The idea of iteration is conceptually important and links well			

with little noise barriers to	contexts so that this too	with arithmetic and		
the Teaching and learning	becomes a practical based	geometric sequences. The		
process.	topic rather than purely	philosophical ideas		
	symbolic manipulation.	underlying upper and		
	However, it is often here	lower bounds would be		
	that learners can find a			
	difficulty because each	interesting to discuss and would have long term		
		benefits for mathematics		
	type of question is slightly			
	different and there is no	students. Investigating and		
	"magic formula" to solve	developing a good		
	them. A carefully built	understanding of the fixed-		
	understanding of the	point process would also		
	format of this section	be beneficial.		
	should help to overcome			
	this.	Stationary points and		
	Lastly, constructing	gradients play a part in		
	differential equations for a	numerical methods and		
	variety of scenarios again	will allow teachers to		
	should be approached	revisit these ideas, and this		
	practically. This then	will help to link these		
	provides a neat way to lead	abstract areas together		
	into the necessity for	more.		
	integration in order to			
	solve these practical			
	problems.	very well with the idea of		
		mathematical modelling		
	Mechanics- Learners will	on which a greater		
	be familiar with	emphasis is now placed.		
	equilibrium problems if	Subject areas which link		
	the object in question has	naturally with numerical		
	no size. If the object has	methods include work on		
	size, then equilibrium of	polynomial curves, their		
	moments also must be	behaviour and shape and		
	considered.	finding their roots. Curve		
		sketching is also extremely		

	relevant with the idea of		
needed link with the			
contents that they			
previous did will help	important role. This would		
learners develop the	be good as the pupils are		
strategy of needing two	facilitated to draw on all		
equations for each	that they would have		
situation; equilibria of	previously saw in previous		
forces and equilibria of	chapters. Finding integrals		
moments.	of curves and, also the area		
	beneath curves is linked		
Finally, once they are	with numerical methods.		
familiar with this strategy	In fact, there is also		
more complex problems	common ground shared		
involving forces at angles	with the study of		
can be attempted.	inequalities, recurrence		
	relations, the modulus		
There is a clear link with	function, gradients and		
the previous work on	tangents, mechanics,		
Newton's First Law and	statistics and decision		
Applications of vectors in a	mathematics.		
plane. This topic extends			
the learners knowledge of these concepts and tests	Vectors is taught at this		
their ability to draw clear	instance as it is clearly the		
diagrams, resolve forces	application to Mechanics –		
and apply conditions of	all forces are vectors.		
equilibria to rigid body	Pupils will then be		
problems. For extension,	facilitated to make the link		
learners could use these	and as such cause them to		
methods in conjunction	make a more meaningful		
with the Laws of Friction to	•		
solve sliding and toppling problems.			
איסטובוווא.	would have seen prior to		
Calculus – The initial work	this stage.		
on gradients and the			
		1	

	whole understanding of the nature of rate of change and gradient is essential to being able to apply this to the curve of Subsequent work on calculus will make use of natural logarithms so this section forms an important foundation for future study.	Similarly, for most of the equations of motion, displacement, velocity and acceleration are all vectors; though this is not always made explicit when dealing with motion in a straight line.				
<mark>Home – Learning:</mark> Mixed exercise	Home – Learning: Mixed exercise	Home – Learning: Mixed exercise	Home – Learning: Topic unit tests	Home – Learning: Topic unit tests	Home – Learning: Past exam papers	
questions	questions	questions		Past exam papers		
e-platform "Integral"	e-platform "Integral"	e-platform "Integral"	e-platform "Integral"			
<mark>Reading / High Quality</mark> Text:	Reading / High Quality Text:	<mark>Reading / High Quality</mark> Text:	Reading / High Quality Text:	Reading / High Quality Text:	Reading / High Quality Text:	
Modelling type questions	Modelling type questions	Modelling type questions	Modelling type questions	Modelling type questions	Modelling type questions	
Numeracy:	Numeracy:	Numeracy:	Numeracy:	Numeracy:	Numeracy:	
Enrichment / opportunities to develop cultural capital (including careers, WRL and SMSC): Binomial Expansion: Medical physics applications of binomial expansion; trigonometric graphs modelling microwaves and other electromagnetic waves; engineering - moments used for calculations to do with use of cranes.						

Regression, Correlation and Hypothesis Testing: Ice-cream sellers typically find that they sell more ice-cream the hotter day. You can measure the strength this correlation using product moment correlation coefficient.

Functions and graphs: Code breakers at Bletchley Park used inverse functions to decode enemy messages during World War II. When the enemy encoded a message, they used a function.

Radians: Radians are units for measuring angles. They are used in mechanics to describe circular motion and can be used to work out the distance between the pods around the edges of a wheel.

Moments: Moments measure the turning effect of a force. Engineers use moments to work out how much load can be applied safely to a crane.

Sequence and Series: It can be found in nature and can be used to model population growth or decline, or the spread of the virus. A good example of this is Population of Southall grew by 21.3% since 2002 and population average age increased by 1 years in the same period.

Vectors: In computer graphics, vectors are used to represent positions, directions, and transformations in a 2D, or 3D space. For example, the position of a point in space or the direction of a light source can be represented using vectors. Moreover, they are used in navigation systems, such as GPS, to represent the direction and distance between two points on the Earth's surface. This helps in determining routes, distances, and locations accurately.

Numerical Methods: It can be used to describe the position of planets as they orbit the sun.

Integration: Archeoelogists use differential equations to estimate the age of fossilised plants and animals.

Trigonometry and Modelling: The strength of microwaves at different points within a microwave oven can be modelled using trigonometric functions. Projectiles: We can use projectile motion to model the flight of a basketball.

Application of forces: A tightrope walker uses a mathematical model to calculate the tension in his wire. This allows him to make sure that the wire is strong enough to hold his weight safely.

Differentiation: We can use differentiation to find the rates of change.

Integration: Archaeologists use differential equations to estimate the age of fossilised plants and animals.

Conditional Probability: The outcome of one event can affect the probability for another event. If a football team scores a goal, the probability that they will win the match will increase.

Normal distribution: In manufacturing and quality control processes, the normal distribution is frequently used to model variation in product specifications. Quality control charts, such as control charts for process monitoring, are based on the assumption of normality. In finance, asset returns are often assumed to be normally distributed. This assumption is used in portfolio theory, option pricing models like the Black-Scholes model, and risk management strategies. In medical research, the normal distribution is used to model characteristics such as blood pressure, cholesterol levels, and other biological measurements. It's also used in epidemiology to model the distribution of diseases in populations.